
OpenRNG Formal Speci�cation
Technical Speci�cation (Draft)

Lotto-Tech Standard for Veri�able Fairness and Randomness

MonkGames

January 19, 2026

1 Introduction

OpenRNG is a lotto-tech standard for veri�able fairness and randomness in lottery systems.

It provides infrastructure for operators to demonstrate provably fair draws to regulators and

participants.

This speci�cation de�nes the technical requirements, protocols, and veri�cation procedures

for implementing OpenRNG-compliant lottery systems.

2 Scope

This speci�cation covers:

� Cryptographic commitment schemes for draw inputs

� Veri�able randomness generation and sources

� Post-draw veri�cation procedures

� Auditability requirements

OpenRNG does not specify lottery game mechanics, prize structures, or regulatory frame-

works. It provides technical infrastructure that operators integrate into their systems.

3 Mathematical Notation

Let Zq denote the integers modulo q, where q is a large prime. Let H : {0, 1}∗ → {0, 1}λ denote

a cryptographic hash function with output length λ (typically SHA-256, so λ = 256). Let M
denote the message space (draw inputs), and C denote the commitment space. Let R denote

the randomness space for commitments, and S the seed space for randomness extraction. Let O
denote the output space of the lottery. Let t ≥ 2 denote the minimum number of independent

seed sources required for randomness extraction.

A commitment scheme consists of three algorithms:

� Commit(m, r)→ c: Commitment algorithm

� Open(c,m, r)→ {0, 1}: Opening veri�cation algorithm

� Verify(c,m, r)→ {0, 1}: Public veri�cation algorithm

1



OpenRNG Formal Speci�cation Draft

4 De�nitions

De�nition 1 (Commitment). A cryptographic commitment is a pair (c, r) where c = Commit(m, r)
binds an operator to a message m ∈ M using randomness r before the message or randomness

are revealed. The commitment c is published, while r remains secret until the reveal phase.

De�nition 2 (Veri�able Randomness). A veri�able randomness source is a function R : St →
{0, 1}k that maps t ≥ 2 independent seeds s1, s2, . . . , st ∈ S to k bits of randomness, where each

si is derived from publicly observable events from independent systems that cannot be manipulated

by the operator.

De�nition 3 (Draw). A draw D is a triple (I,R,O) where:

� I = {c1, . . . , cn} is a set of committed inputs

� R = R(s1, s2, . . . , st) is veri�able randomness extracted from t ≥ 2 independent seed sources

� O = f(I,R) is the output computed by deterministic function f

De�nition 4 (Veri�cation). Veri�cation is the process of con�rming that Verify(ci,mi, ri) = 1
for all commitments ci ∈ I with revealed (mi, ri), that R was correctly extracted from seed sources

{s1, s2, . . . , st}, and that O = f({m1, . . . ,mn}, R).

5 Guarantees

OpenRNG provides the following guarantees:

5.1 Inspectability

Draw processes and veri�cation steps are publicly documented. All procedures, algorithms, and

veri�cation steps are available for examination.

5.2 Veri�ability

Post-draw outcomes can be independently veri�ed by anyone using public information and stan-

dard veri�cation procedures. Veri�cation requires no trust in the operator.

5.3 Auditability

Full audit trail for regulators and technical auditors. All draw inputs, randomness sources, and

outputs are documented and veri�able.

6 Boundaries

OpenRNG does not:

� Operate lotteries

� Bypass regulators

� Remove operator responsibility

� Market to consumers

The standard provides technical infrastructure that operators integrate. Operators retain

control of business operations, regulatory relationships, and participant relationships.

2



OpenRNG Formal Speci�cation Draft

7 Cryptographic Primitives

7.1 Commitment Scheme

OpenRNG uses a hash-based commitment scheme de�ned as follows:

De�nition 5 (Commitment Algorithm). For message m ∈M and randomness r ∈ {0, 1}λ:

Commit(m, r) = H(m∥r) (1)

= H(encode(m)∥r) (2)

where encode :M→ {0, 1}∗ is an injective encoding function.

De�nition 6 (Opening Algorithm). Given commitment c, message m, and randomness r:

Open(c,m, r) =

{
1 if Commit(m, r) = c

0 otherwise
(3)

Property 1 (Binding). For all polynomial-time adversaries A:

Pr

[
(m, r,m′, r′)← A(1λ) :

m ̸= m′ ∧ Commit(m, r) = Commit(m′, r′)

]
≤ negl(λ) (4)

where negl(λ) is negligible in λ.

Property 2 (Hiding). For all m0,m1 ∈M and uniform randomness r:

{c : c← Commit(m0, r)} ≈c {c : c← Commit(m1, r)} (5)

where ≈c denotes computational indistinguishability.

7.2 Randomness Extraction

Veri�able randomness is extracted from multiple independent, publicly observable sources using

a deterministic extraction function. This multi-source approach ensures unpredictability and

resistance to manipulation by any single party.

De�nition 7 (Multi-Source Randomness Extraction). Given t ≥ 2 independent seed sources

s1, s2, . . . , st (e.g., block hashes from di�erent blockchains, external randomness beacons, VDF

outputs):

R(s1, s2, . . . , st) = H(s1∥s2∥ . . . ∥st∥nonce) (6)

where nonce is an optional operator-provided nonce that is committed before any si is known,

and H is a cryptographic hash function.

Algorithm: Randomness Generation

1. Input: Independent seed sources {s1, s2, . . . , st} with t ≥ 2, optional nonce n (if used,

must be committed in Phase 1)

2. Output: Random value R ∈ {0, 1}k

3. Procedure:

� Concatenate seed sources: S ← s1∥s2∥ . . . ∥st
� If nonce n is used: R← H(S∥n)

3



OpenRNG Formal Speci�cation Draft

� Else: R← H(S)

4. Return: R

Property 3 (Veri�ability). Given seed sources {s1, s2, . . . , st} and nonce n (if used), any party

can compute R(s1, s2, . . . , st) independently. No secret information is required.

Property 4 (Multi-Source Unpredictability). An adversary controlling at most t − 1 of the t
independent seed sources cannot predict the output randomness R with non-negligible advantage,

assuming at least one source is unpredictable and independent.

7.3 Draw Protocol

Algorithm: OpenRNG Draw Protocol

Phase 1: Commitment

1. For each input mi ∈ {m1, . . . ,mn}:

� Generate random ri
$←− {0, 1}λ

� Compute ci ← Commit(mi, ri)

� Publish commitment ci

Phase 2: Randomness Generation

1. Observe t ≥ 2 independent seed sources s1, s2, . . . , st at designated times T1, T2, . . . , Tt

2. Concatenate seed sources: S ← s1∥s2∥ . . . ∥st

3. Compute R← H(S∥n) where n is committed nonce (if used)

4. Publish all seed sources {s1, s2, . . . , st}, concatenation S, and computed R

Phase 3: Reveal

1. For each commitment ci:

� Publish opening (mi, ri)

� Verify Open(ci,mi, ri) = 1

Phase 4: Computation

1. Compute O ← f({m1, . . . ,mn}, R)

2. Publish output O

7.4 Veri�cation Algorithm

Algorithm: Veri�cation Procedure

1. Input: Draw data: commitments {c1, . . . , cn}, openings {(m1, r1), . . . , (mn, rn)}, seed
sources {s1, s2, . . . , st}, randomness R, output O, optional nonce n

2. Output: Veri�cation result v ∈ {0, 1}

3. Initialize v ← 1

4. For each commitment ci with opening (mi, ri):

� If Open(ci,mi, ri) ̸= 1, set v ← 0 and break

4



OpenRNG Formal Speci�cation Draft

5. Verify randomness: Concatenate seed sources S ← s1∥s2∥ . . . ∥st, then compute R′ ←
H(S∥n) (if nonce used, else R′ ← H(S))

� If R′ ̸= R, set v ← 0 and break

6. Verify output: Compute O′ ← f({m1, . . . ,mn}, R)

� If O′ ̸= O, set v ← 0 and break

7. Return: v

Theorem 1 (Veri�cation Correctness). If all parties follow the protocol honestly, the veri�cation

algorithm returns v = 1 with probability 1.

Theorem 2 (Soundness). If the veri�cation algorithm returns v = 1, then the output O was

computed correctly from the revealed inputs and veri�ed randomness with overwhelming proba-

bility, assuming the cryptographic hash function H is collision-resistant.

8 Implementation Details

8.1 Hash Function Requirements

The commitment scheme and randomness extraction require a cryptographic hash function sat-

isfying:

� Collision resistance: Finding x ̸= x′ such that H(x) = H(x′) is computationally infeasible

� Preimage resistance: Given y, �nding x such that H(x) = y is computationally infeasible

� Second preimage resistance: Given x, �nding x′ ̸= x such that H(x) = H(x′) is computa-

tionally infeasible

Recommended: SHA-256 (λ = 256) or SHA-3-256.

8.2 Message Encoding

Messages m ∈ M must be encoded deterministically before commitment. Encoding function

encode :M→ {0, 1}∗ must be:

� Injective: encode(m) = encode(m′) =⇒ m = m′

� Canonical: Same input always produces same output

� Unambiguous: Output can be decoded back to original message

For structured data (JSON, arrays), use canonical serialization (e.g., RFC 8785 JSON Canon-

icalization Scheme).

8.3 Randomness Requirements

Commitment randomness ri must be:

� Cryptographically random: ri
$←− {0, 1}λ (uniformly random)

� Independent: Each ri generated independently

� Secret: Not revealed until Phase 3 (Reveal)

� Unpredictable: Not derivable from public information

Use cryptographically secure pseudorandom number generator (CSPRNG) for generating ri.

5



OpenRNG Formal Speci�cation Draft

8.4 Seed Source Requirements

Each seed source si must be:

� Publicly observable: Anyone can access si at designated time Ti

� Unpredictable: Operator cannot predict si at commitment time with non-negligible ad-

vantage

� Unbiased: No single party can meaningfully in�uence distribution of si

� Timely: Available before randomness generation but after commitment phase

� Independent: Sources must be independent such that controlling one source does not

provide information about others

Minimum Requirements:

� At least t = 2 independent seed sources must be used

� Sources must be from di�erent systems or time periods to ensure independence

� At least one source must be from a system where the operator has no in�uence (e.g.,

external randomness beacon, di�erent blockchain)

Recommended Seed Sources:

� Block hashes from di�erent blockchains (e.g., Bitcoin, Ethereum) at speci�ed future block

heights

� External randomness beacons (e.g., NIST Randomness Beacon, drand)

� VDF (Veri�able Delay Function) outputs from publicly committed challenges

� Timestamps from independent time servers with cryptographic attestation

Security Model: The multi-source approach ensures that even if an adversary controls

t − 1 sources, they cannot predict the �nal randomness, provided at least one source remains

unpredictable and independent.

8.5 Output Computation Function

The function f :Mn × {0, 1}k → O must be:

� Deterministic: f(m,R) = f(m,R) always

� Public: Algorithm is publicly speci�ed

� E�cient: Computable in polynomial time

� Unbiased: Output distribution is uniform (or speci�ed distribution) when inputs are uni-

form

For lottery selection: f typically combines inputs with randomness to select winners using

speci�ed selection rules (e.g., weighted random selection, tournament bracket).

6



OpenRNG Formal Speci�cation Draft

8.6 Production Implementation

Drawballz is a production lottery game built on OpenRNG standards. It demonstrates Open-

RNG requirements in practice.

The Drawballz implementation:

� Uses SHA-256 for commitments and randomness extraction

� Commits player entries before randomness generation

� Extracts randomness from multiple independent sources (e.g., multiple blockchain block

hashes from di�erent chains, external randomness beacons)

� Provides public veri�cation tools for post-draw veri�cation

� Maintains full audit trail of all seed sources, commitments, randomness, and outcomes

9 Regulatory Framework

OpenRNG is designed to complement existing regulatory frameworks. It enables independent

veri�cation by regulators and provides additional auditability within established regulatory

structures.

Operators implementing OpenRNG must continue to comply with all applicable regulatory

requirements in their jurisdiction.

10 Version History

� Draft 1.0 � Initial speci�cation with single-source randomness

� Draft 1.1 � January 19, 2026� Updated to multi-source randomness extraction for enhanced

security

7


	Introduction
	Scope
	Mathematical Notation
	Definitions
	Guarantees
	Inspectability
	Verifiability
	Auditability

	Boundaries
	Cryptographic Primitives
	Commitment Scheme
	Randomness Extraction
	Draw Protocol
	Verification Algorithm

	Implementation Details
	Hash Function Requirements
	Message Encoding
	Randomness Requirements
	Seed Source Requirements
	Output Computation Function
	Production Implementation

	Regulatory Framework
	Version History

