OpenRNG Formal Specification
Technical Specification (Draft)
Lotto-Tech Standard for Verifiable Fairness and Randomness

MonkGames

January 19, 2026

1 Introduction

OpenRNG is a lotto-tech standard for verifiable fairness and randomness in lottery systems.
It provides infrastructure for operators to demonstrate provably fair draws to regulators and
participants.

This specification defines the technical requirements, protocols, and verification procedures
for implementing OpenRNG-compliant lottery systems.

2 Scope
This specification covers:

e Cryptographic commitment schemes for draw inputs
e Verifiable randomness generation and sources
e Post-draw verification procedures

e Auditability requirements

OpenRNG does not specify lottery game mechanics, prize structures, or regulatory frame-
works. It provides technical infrastructure that operators integrate into their systems.

3 Mathematical Notation

Let Z, denote the integers modulo ¢, where ¢ is a large prime. Let H : {0,1}* — {0,1}* denote
a cryptographic hash function with output length A (typically SHA-256, so A = 256). Let M
denote the message space (draw inputs), and C denote the commitment space. Let R denote
the randomness space for commitments, and S the seed space for randomness extraction. Let O
denote the output space of the lottery. Let ¢ > 2 denote the minimum number of independent
seed sources required for randomness extraction.

A commitment scheme consists of three algorithms:

e Commit(m,r) — ¢: Commitment algorithm
e Open(c,m,r) — {0,1}: Opening verification algorithm

e Verify(c, m,r) — {0, 1}: Public verification algorithm

OpenRNG Formal Specification Draft

4 Definitions

Definition 1 (Commitment). A cryptographic commitment is a pair (c,r) where c = Commit(m, r)
binds an operator to a message m € M using randomness r before the message or randomness
are revealed. The commitment c is published, while r remawns secret until the reveal phase.

Definition 2 (Verifiable Randomness). A verifiable randomness source is a function R : S' —
{0, 1}]C that maps t > 2 independent seeds s1,82,...,8 € S to k bits of randomness, where each
s; 15 derived from publicly observable events from independent systems that cannot be manipulated
by the operator.

Definition 3 (Draw). A draw D is a triple (I, R, O) where:
o I ={c1,...,cn} is a set of committed inputs
e R= R(s1,$2,...,5t) is verifiable randomness extracted from t > 2 independent seed sources
e O = f(I,R) is the output computed by deterministic function f

Definition 4 (Verification). Verification is the process of confirming that Verify(c;, m;, ;) = 1
for all commitments ¢; € I with revealed (m;,r;), that R was correctly extracted from seed sources

{s1,82,...,8}, and that O = f({m1,...,mp}, R).

5 Guarantees

OpenRNG provides the following guarantees:

5.1 Inspectability

Draw processes and verification steps are publicly documented. All procedures, algorithms, and
verification steps are available for examination.

5.2 Verifiability

Post-draw outcomes can be independently verified by anyone using public information and stan-
dard verification procedures. Verification requires no trust in the operator.

5.3 Auditability

Full audit trail for regulators and technical auditors. All draw inputs, randomness sources, and
outputs are documented and verifiable.

6 Boundaries

OpenRNG does not:

e Operate lotteries
e Bypass regulators
e Remove operator responsibility

e Market to consumers

The standard provides technical infrastructure that operators integrate. Operators retain
control of business operations, regulatory relationships, and participant relationships.

OpenRNG Formal Specification Draft

7 Cryptographic Primitives
7.1 Commitment Scheme
OpenRNG uses a hash-based commitment scheme defined as follows:

Definition 5 (Commitment Algorithm). For message m € M and randomness r € {0,1}*:

Commit(m,r) = H(m||r) (1)
= H(encode(m)||r) (2)

where encode : M — {0,1}* is an injective encoding function.

Definition 6 (Opening Algorithm). Given commitment c, message m, and randomness r:

1 if Commit(m,r) =c 3)

0 otherwise

Open(c,m,r) = {

Property 1 (Binding). For all polynomial-time adversaries A:

(m,r,m',r'") A(l)‘) :

br m # m’ A Commit(m,r) = Commit(m/, ")

< negl()) (4)

where negl(X) is negligible in \.
Property 2 (Hiding). For all mg,m; € M and uniform randomness r:
{c: ¢+ Commit(mog,r)} =~ {c: ¢ + Commit(m,r)} (5)

where ~. denotes computational indistinguishability.

7.2 Randomness Extraction

Verifiable randomness is extracted from multiple independent, publicly observable sources using
a deterministic extraction function. This multi-source approach ensures unpredictability and
resistance to manipulation by any single party.

Definition 7 (Multi-Source Randomness Extraction). Given t > 2 independent seed sources
S1,892,...,8¢ (e.g., block hashes from different blockchains, external randomness beacons, VDF
outputs):

R(s1,82,...,5:) = H(s1]|s2]| ...]|st]|nonce) (6)

where nonce is an optional operator-provided nonce that is committed before any s; is known,
and H s a cryptographic hash function.

Algorithm: Randomness Generation

1. Input: Independent seed sources {si,s2,...,s:} with ¢ > 2, optional nonce n (if used,
must be committed in Phase 1)

2. Output: Random value R € {0, 1}*
3. Procedure:

e Concatenate seed sources: S < s1||sa]| ... ||s¢

e If nonce n is used: R < H(S|n)

OpenRNG Formal Specification Draft

e Else: R« H(S)
4. Return: R

Property 3 (Verifiability). Given seed sources {s1, sa,...,st} and nonce n (if used), any party
can compute R(s1,82,...,8:) independently. No secret information is required.

Property 4 (Multi-Source Unpredictability). An adversary controlling at most t — 1 of the t
independent seed sources cannot predict the output randomness R with non-negligible advantage,
assuming ot least one source is unpredictable and independent.

7.3 Draw Protocol

Algorithm: OpenRNG Draw Protocol
Phase 1: Commitment

1. For each input m; € {mq,...,my}:
e Generate random 7 & {0, 1}

e Compute ¢; + Commit(my, ;)

e Publish commitment ¢;
Phase 2: Randomness Generation
1. Observe t > 2 independent seed sources s1, s3, ..., at designated times 11,75, ..., T}
2. Concatenate seed sources: S < sy|s2|| ... ||s¢
3. Compute R <+ H(S||n) where n is committed nonce (if used)
4. Publish all seed sources {s1, s2,..., s}, concatenation S, and computed R
Phase 3: Reveal
1. For each commitment ¢;:

e Publish opening (m;, ;)

e Verify Open(c;, m;,r;) =1
Phase 4: Computation
1. Compute O < f({m1,...,my}, R)

2. Publish output O

7.4 Verification Algorithm
Algorithm: Verification Procedure

1. Input: Draw data: commitments {ci,...,cn}, openings {(mi,71),..., (M, 1)}, seed
sources {si, $2, ..., S}, randomness R, output O, optional nonce n

2. Output: Verification result v € {0,1}
3. Initialize v + 1
4. For each commitment ¢; with opening (m;,r;):

e If Open(c;, mj,r;) # 1, set v < 0 and break

OpenRNG Formal Specification Draft

5. Verify randomness: Concatenate seed sources S < si||szf ... s, then compute R’ <+
H(S||n) (if nonce used, else R’ < H(S))

e If R # R, set v < 0 and break
6. Verify output: Compute O' < f({mi,...,mp}, R)
o If O' £ O, set v <+ 0 and break

7. Return: v

Theorem 1 (Verification Correctness). If all parties follow the protocol honestly, the verification
algorithm returns v = 1 with probability 1.

Theorem 2 (Soundness). If the verification algorithm returns v = 1, then the output O was
computed correctly from the revealed inputs and verified randomness with overwhelming proba-
bility, assuming the cryptographic hash function H is collision-resistant.

8 Implementation Details

8.1 Hash Function Requirements

The commitment scheme and randomness extraction require a cryptographic hash function sat-
isfying:

e Collision resistance: Finding x # «’ such that H(z) = H(z') is computationally infeasible
e Preimage resistance: Given y, finding x such that H(x) = y is computationally infeasible

e Second preimage resistance: Given z, finding z’ # x such that H(z) = H(2') is computa-
tionally infeasible

Recommended: SHA-256 (A = 256) or SHA-3-256.

8.2 Message Encoding

Messages m € M must be encoded deterministically before commitment. Encoding function
encode : M — {0, 1}* must be:

e Injective: encode(m) = encode(m’) = m =m’
e Canonical: Same input always produces same output
e Unambiguous: Output can be decoded back to original message
For structured data (JSON, arrays), use canonical serialization (e.g., RFC 8785 JSON Canon-
icalization Scheme).
8.3 Randomness Requirements
Commitment randomness r; must be:
e Cryptographically random: r; & {0,1}* (uniformly random)
e Independent: Each r; generated independently
e Secret: Not revealed until Phase 3 (Reveal)
e Unpredictable: Not derivable from public information

Use cryptographically secure pseudorandom number generator (CSPRNG) for generating ;.

OpenRNG Formal Specification Draft

8.4 Seed Source Requirements

Each seed source s; must be:
e Publicly observable: Anyone can access s; at designated time T;

e Unpredictable: Operator cannot predict s; at commitment time with non-negligible ad-
vantage

e Unbiased: No single party can meaningfully influence distribution of s;
e Timely: Available before randomness generation but after commitment phase

e Independent: Sources must be independent such that controlling one source does not
provide information about others

Minimum Requirements:
e At least ¢ = 2 independent seed sources must be used
e Sources must be from different systems or time periods to ensure independence

e At least one source must be from a system where the operator has no influence (e.g.,
external randomness beacon, different blockchain)

Recommended Seed Sources:

e Block hashes from different blockchains (e.g., Bitcoin, Ethereum) at specified future block
heights

e External randomness beacons (e.g., NIST Randomness Beacon, drand)
e VDF (Verifiable Delay Function) outputs from publicly committed challenges
e Timestamps from independent time servers with cryptographic attestation

Security Model: The multi-source approach ensures that even if an adversary controls
t — 1 sources, they cannot predict the final randomness, provided at least one source remains
unpredictable and independent.

8.5 Output Computation Function
The function f: M™ x {0,1}* — O must be:

e Deterministic: f(m, R) = f(m, R) always
e Public: Algorithm is publicly specified
e Efficient: Computable in polynomial time

e Unbiased: Output distribution is uniform (or specified distribution) when inputs are uni-
form

For lottery selection: f typically combines inputs with randomness to select winners using
specified selection rules (e.g., weighted random selection, tournament bracket).

OpenRNG Formal Specification Draft

8.6 Production Implementation

Drawballz is a production lottery game built on OpenRNG standards. It demonstrates Open-
RNG requirements in practice.
The Drawballz implementation:

o Uses SHA-256 for commitments and randomness extraction

Commits player entries before randomness generation

Extracts randomness from multiple independent sources (e.g., multiple blockchain block
hashes from different chains, external randomness beacons)

Provides public verification tools for post-draw verification

Maintains full audit trail of all seed sources, commitments, randomness, and outcomes

9 Regulatory Framework

OpenRNG is designed to complement existing regulatory frameworks. It enables independent
verification by regulators and provides additional auditability within established regulatory
structures.

Operators implementing OpenRNG must continue to comply with all applicable regulatory
requirements in their jurisdiction.

10 Version History

e Draft 1.0 — Initial specification with single-source randomness

e Draft 1.1 — January 19, 2026— Updated to multi-source randomness extraction for enhanced
security

	Introduction
	Scope
	Mathematical Notation
	Definitions
	Guarantees
	Inspectability
	Verifiability
	Auditability

	Boundaries
	Cryptographic Primitives
	Commitment Scheme
	Randomness Extraction
	Draw Protocol
	Verification Algorithm

	Implementation Details
	Hash Function Requirements
	Message Encoding
	Randomness Requirements
	Seed Source Requirements
	Output Computation Function
	Production Implementation

	Regulatory Framework
	Version History

