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1 Introduction

OpenRNG is a lotto-tech standard for veri�able fairness and randomness in lottery systems.

It provides infrastructure for operators to demonstrate provably fair draws to regulators and

participants.

This speci�cation de�nes the technical requirements, protocols, and veri�cation procedures

for implementing OpenRNG-compliant lottery systems.

2 Scope

This speci�cation covers:

� Cryptographic commitment schemes for draw inputs

� Veri�able randomness generation and sources

� Post-draw veri�cation procedures

� Auditability requirements

OpenRNG does not specify lottery game mechanics, prize structures, or regulatory frame-

works. It provides technical infrastructure that operators integrate into their systems.

3 Mathematical Notation

Let Zq denote the integers modulo q, where q is a large prime. Let H : {0, 1}∗ → {0, 1}λ denote

a cryptographic hash function with output length λ (typically SHA-256, so λ = 256). Let M
denote the message space (draw inputs), and C denote the commitment space. Let R denote

the randomness space for commitments, and S the seed space for randomness extraction. Let O
denote the output space of the lottery. Let t ≥ 2 denote the minimum number of independent

seed sources required for randomness extraction.

A commitment scheme consists of three algorithms:

� Commit(m, r)→ c: Commitment algorithm

� Open(c,m, r)→ {0, 1}: Opening veri�cation algorithm

� Verify(c,m, r)→ {0, 1}: Public veri�cation algorithm
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4 De�nitions

De�nition 1 (Commitment). A cryptographic commitment is a pair (c, r) where c = Commit(m, r)
binds an operator to a message m ∈ M using randomness r before the message or randomness

are revealed. The commitment c is published, while r remains secret until the reveal phase.

De�nition 2 (Veri�able Randomness). A veri�able randomness source is a function R : St →
{0, 1}k that maps t ≥ 2 independent seeds s1, s2, . . . , st ∈ S to k bits of randomness, where each

si is derived from publicly observable events from independent systems that cannot be manipulated

by the operator.

De�nition 3 (Draw). A draw D is a triple (I,R,O) where:

� I = {c1, . . . , cn} is a set of committed inputs

� R = R(s1, s2, . . . , st) is veri�able randomness extracted from t ≥ 2 independent seed sources

� O = f(I,R) is the output computed by deterministic function f

De�nition 4 (Veri�cation). Veri�cation is the process of con�rming that Verify(ci,mi, ri) = 1
for all commitments ci ∈ I with revealed (mi, ri), that R was correctly extracted from seed sources

{s1, s2, . . . , st}, and that O = f({m1, . . . ,mn}, R).

5 Guarantees

OpenRNG provides the following guarantees:

5.1 Inspectability

Draw processes and veri�cation steps are publicly documented. All procedures, algorithms, and

veri�cation steps are available for examination.

5.2 Veri�ability

Post-draw outcomes can be independently veri�ed by anyone using public information and stan-

dard veri�cation procedures. Veri�cation requires no trust in the operator.

5.3 Auditability

Full audit trail for regulators and technical auditors. All draw inputs, randomness sources, and

outputs are documented and veri�able.

6 Boundaries

OpenRNG does not:

� Operate lotteries

� Bypass regulators

� Remove operator responsibility

� Market to consumers

The standard provides technical infrastructure that operators integrate. Operators retain

control of business operations, regulatory relationships, and participant relationships.
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7 Cryptographic Primitives

7.1 Commitment Scheme

OpenRNG uses a hash-based commitment scheme de�ned as follows:

De�nition 5 (Commitment Algorithm). For message m ∈M and randomness r ∈ {0, 1}λ:

Commit(m, r) = H(m∥r) (1)

= H(encode(m)∥r) (2)

where encode :M→ {0, 1}∗ is an injective encoding function.

De�nition 6 (Opening Algorithm). Given commitment c, message m, and randomness r:

Open(c,m, r) =

{
1 if Commit(m, r) = c

0 otherwise
(3)

Property 1 (Binding). For all polynomial-time adversaries A:

Pr

[
(m, r,m′, r′)← A(1λ) :

m ̸= m′ ∧ Commit(m, r) = Commit(m′, r′)

]
≤ negl(λ) (4)

where negl(λ) is negligible in λ.

Property 2 (Hiding). For all m0,m1 ∈M and uniform randomness r:

{c : c← Commit(m0, r)} ≈c {c : c← Commit(m1, r)} (5)

where ≈c denotes computational indistinguishability.

7.2 Randomness Extraction

Veri�able randomness is extracted from multiple independent, publicly observable sources using

a deterministic extraction function. This multi-source approach ensures unpredictability and

resistance to manipulation by any single party.

De�nition 7 (Multi-Source Randomness Extraction). Given t ≥ 2 independent seed sources

s1, s2, . . . , st (e.g., block hashes from di�erent blockchains, external randomness beacons, VDF

outputs):

R(s1, s2, . . . , st) = H(s1∥s2∥ . . . ∥st∥nonce) (6)

where nonce is an optional operator-provided nonce that is committed before any si is known,

and H is a cryptographic hash function.

Algorithm: Randomness Generation

1. Input: Independent seed sources {s1, s2, . . . , st} with t ≥ 2, optional nonce n (if used,

must be committed in Phase 1)

2. Output: Random value R ∈ {0, 1}k

3. Procedure:

� Concatenate seed sources: S ← s1∥s2∥ . . . ∥st
� If nonce n is used: R← H(S∥n)

3



OpenRNG Formal Speci�cation Draft

� Else: R← H(S)

4. Return: R

Property 3 (Veri�ability). Given seed sources {s1, s2, . . . , st} and nonce n (if used), any party

can compute R(s1, s2, . . . , st) independently. No secret information is required.

Property 4 (Multi-Source Unpredictability). An adversary controlling at most t − 1 of the t
independent seed sources cannot predict the output randomness R with non-negligible advantage,

assuming at least one source is unpredictable and independent.

7.3 Draw Protocol

Algorithm: OpenRNG Draw Protocol

Phase 1: Commitment

1. For each input mi ∈ {m1, . . . ,mn}:

� Generate random ri
$←− {0, 1}λ

� Compute ci ← Commit(mi, ri)

� Publish commitment ci

Phase 2: Randomness Generation

1. Observe t ≥ 2 independent seed sources s1, s2, . . . , st at designated times T1, T2, . . . , Tt

2. Concatenate seed sources: S ← s1∥s2∥ . . . ∥st

3. Compute R← H(S∥n) where n is committed nonce (if used)

4. Publish all seed sources {s1, s2, . . . , st}, concatenation S, and computed R

Phase 3: Reveal

1. For each commitment ci:

� Publish opening (mi, ri)

� Verify Open(ci,mi, ri) = 1

Phase 4: Computation

1. Compute O ← f({m1, . . . ,mn}, R)

2. Publish output O

7.4 Veri�cation Algorithm

Algorithm: Veri�cation Procedure

1. Input: Draw data: commitments {c1, . . . , cn}, openings {(m1, r1), . . . , (mn, rn)}, seed
sources {s1, s2, . . . , st}, randomness R, output O, optional nonce n

2. Output: Veri�cation result v ∈ {0, 1}

3. Initialize v ← 1

4. For each commitment ci with opening (mi, ri):

� If Open(ci,mi, ri) ̸= 1, set v ← 0 and break
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5. Verify randomness: Concatenate seed sources S ← s1∥s2∥ . . . ∥st, then compute R′ ←
H(S∥n) (if nonce used, else R′ ← H(S))

� If R′ ̸= R, set v ← 0 and break

6. Verify output: Compute O′ ← f({m1, . . . ,mn}, R)

� If O′ ̸= O, set v ← 0 and break

7. Return: v

Theorem 1 (Veri�cation Correctness). If all parties follow the protocol honestly, the veri�cation

algorithm returns v = 1 with probability 1.

Theorem 2 (Soundness). If the veri�cation algorithm returns v = 1, then the output O was

computed correctly from the revealed inputs and veri�ed randomness with overwhelming proba-

bility, assuming the cryptographic hash function H is collision-resistant.

8 Implementation Details

8.1 Hash Function Requirements

The commitment scheme and randomness extraction require a cryptographic hash function sat-

isfying:

� Collision resistance: Finding x ̸= x′ such that H(x) = H(x′) is computationally infeasible

� Preimage resistance: Given y, �nding x such that H(x) = y is computationally infeasible

� Second preimage resistance: Given x, �nding x′ ̸= x such that H(x) = H(x′) is computa-

tionally infeasible

Recommended: SHA-256 (λ = 256) or SHA-3-256.

8.2 Message Encoding

Messages m ∈ M must be encoded deterministically before commitment. Encoding function

encode :M→ {0, 1}∗ must be:

� Injective: encode(m) = encode(m′) =⇒ m = m′

� Canonical: Same input always produces same output

� Unambiguous: Output can be decoded back to original message

For structured data (JSON, arrays), use canonical serialization (e.g., RFC 8785 JSON Canon-

icalization Scheme).

8.3 Randomness Requirements

Commitment randomness ri must be:

� Cryptographically random: ri
$←− {0, 1}λ (uniformly random)

� Independent: Each ri generated independently

� Secret: Not revealed until Phase 3 (Reveal)

� Unpredictable: Not derivable from public information

Use cryptographically secure pseudorandom number generator (CSPRNG) for generating ri.
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8.4 Seed Source Requirements

Each seed source si must be:

� Publicly observable: Anyone can access si at designated time Ti

� Unpredictable: Operator cannot predict si at commitment time with non-negligible ad-

vantage

� Unbiased: No single party can meaningfully in�uence distribution of si

� Timely: Available before randomness generation but after commitment phase

� Independent: Sources must be independent such that controlling one source does not

provide information about others

Minimum Requirements:

� At least t = 2 independent seed sources must be used

� Sources must be from di�erent systems or time periods to ensure independence

� At least one source must be from a system where the operator has no in�uence (e.g.,

external randomness beacon, di�erent blockchain)

Recommended Seed Sources:

� Block hashes from di�erent blockchains (e.g., Bitcoin, Ethereum) at speci�ed future block

heights

� External randomness beacons (e.g., NIST Randomness Beacon, drand)

� VDF (Veri�able Delay Function) outputs from publicly committed challenges

� Timestamps from independent time servers with cryptographic attestation

Security Model: The multi-source approach ensures that even if an adversary controls

t − 1 sources, they cannot predict the �nal randomness, provided at least one source remains

unpredictable and independent.

8.5 Output Computation Function

The function f :Mn × {0, 1}k → O must be:

� Deterministic: f(m,R) = f(m,R) always

� Public: Algorithm is publicly speci�ed

� E�cient: Computable in polynomial time

� Unbiased: Output distribution is uniform (or speci�ed distribution) when inputs are uni-

form

For lottery selection: f typically combines inputs with randomness to select winners using

speci�ed selection rules (e.g., weighted random selection, tournament bracket).
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8.6 Production Implementation

Drawballz is a production lottery game built on OpenRNG standards. It demonstrates Open-

RNG requirements in practice.

The Drawballz implementation:

� Uses SHA-256 for commitments and randomness extraction

� Commits player entries before randomness generation

� Extracts randomness from multiple independent sources (e.g., multiple blockchain block

hashes from di�erent chains, external randomness beacons)

� Provides public veri�cation tools for post-draw veri�cation

� Maintains full audit trail of all seed sources, commitments, randomness, and outcomes

9 Regulatory Framework

OpenRNG is designed to complement existing regulatory frameworks. It enables independent

veri�cation by regulators and provides additional auditability within established regulatory

structures.

Operators implementing OpenRNG must continue to comply with all applicable regulatory

requirements in their jurisdiction.

10 Version History

� Draft 1.0 � Initial speci�cation with single-source randomness

� Draft 1.1 � January 19, 2026� Updated to multi-source randomness extraction for enhanced

security
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